Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Some non-H atoms missing
R factor $=0.045$
$w R$ factor $=0.119$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[tetra- μ_{2}-aqua-diaqua- μ_{2}-2,5-dibenzoylterephthalatodipotassium(I)] dihydrate]

The title compound, $\left\{\left[\mathrm{K}_{2}\left(\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was prepared by slow evaporation of an aqueous solution of potassium dibenzoylterephthalate. The molecular complex contains two potassium cations, one 2,5-dibenzoylterephthalate anion, six coordinated water molecules and two uncoordinated water molecules. The 2,5-dibenzoylterephthalate anion lies on a center of symmetry. Each potassium cation is coordinated by seven O atoms, two from 2,5-dibenzoylterephthalate anions and the remainder from four bridging and one terminal water molecules. The uncoordinated water molecules are linked to the carboxylate O atoms and the coordinated water molecules by a network of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a layer structure.

Comment

2,5-Dibenzoylterephthalic acid with its centrosymmetric unit is a significant material in the synthesis of supramolecular coordination compounds. The synthesis of 2,5-dibenzoylterephthalic acid has been reported (Imai et al., 1975), as have the structures of 2,5-dibenzoylterephthalic acid and $\mathrm{Na}_{2}\left(6 \mathrm{H}_{2} \mathrm{O}\right)\left(2,5\right.$-dibenzoylterephthalate) $\cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Zhu et al., 2005; Wang et al., 2005). This paper reports the structure of $\mathrm{K}_{2}\left(2,5\right.$-dibenzoylterephthalate) $\left(6 \mathrm{H}_{2} \mathrm{O}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1 and Table 1).

(I)

The asymmetric unit consists of one-half of the formula unit, as the 2,5 -dibenzoylterephthalate anion lies on a center of symmetry, at the centroid of the $(\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 2 \mathrm{~A} / \mathrm{C} 3 \mathrm{~A} /$ C4A) terephthalate ring. The coordination of each K^{+}cation is defined by seven coordinated O atoms, two from 2,5dibenzoylterephthalate anions and the remainder from four bridging and one terminal water molecules (Fig. 2). In the crystal structure, the uncoordinated water molecules are linked to the carboxylate O atoms and the coordinated water molecules by a network of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 3), forming a two-dimensional layer structure.

Received 16 December 2005 Accepted 22 December 2005 Online 7 January 2006

A segment of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $-x+1,-y,-z-1$.]

Figure 2
The coordination environment of the K^{+}ions in (I). The symmetry operations for the atoms labelled with suffixes A-E are as follows: (A) $-x,-y-1,-z$; (B) $x-1, y, z ;(\mathrm{C})-x-1,-y,-z ;$ (D) $1-x,-1-y$, $-z ;(\mathrm{E}) x+1, y, z$.

Experimental

2,5-Dibenzoylterephthalic acid was prepared by the method of Imai et al. (1975). Crystals of (I) suitable for diffraction measurements were obtained by slow evaporation of an aqueous solution (15 ml) containing potassium hydroxide $(0.4 \mathrm{~g}, 6 \mathrm{mmol})$ and 2,5-dibenzoylterephthalic acid $(1.1 \mathrm{~g}, 3 \mathrm{mmol})$ at room temperature. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{7} \mathrm{~K}$: C 44.59, H 4.77%; found: C $44.65, \mathrm{H}$ 4.82%. IR (KBr, cm^{-1}): 3386, 3255, 2912, 2835, 1671, 1584, 1453, 1405, 1338, 1291, 1259, 1144.

Crystal data

$\left[\mathrm{K}_{2}\left(\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=594.64$
Triclinic, $P \overline{1}$
$a=6.153(2) \AA$
$b=8.455$ (3) \AA
$c=13.769$ (4) A
$\alpha=69.441(11)^{\circ}$
$\beta=79.673$ (13) ${ }^{\circ}$
$\gamma=87.265(14)^{\circ}$
$V=659.7(4) \AA^{3}$

$Z=1$

$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3510
reflections
$\theta=2.5-28.1^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Plate, colorless
$0.46 \times 0.40 \times 0.18 \mathrm{~mm}$

Figure 3
Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) in (I). The symmetry operations for the atoms labelled with suffixes A-D are as follows: (A) $-x+1,-y,-z-1$; (B) $x, y-1, z ;$ (C) $-x,-y,-z$; (D) $x-$ $1, y, z$.

Data collection

Bruker SMART CCD area-detector	3699 independent reflections
\quad diffractometer	3553 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\max }=31.1^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 2002 $)$	$h=-8 \rightarrow 8$
$\quad T_{\min }=0.827, T_{\text {max }}=0.927$	$k=-11 \rightarrow 11$
9790 measured reflections	$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0578 P)^{2}\right.} \\
&\quad+0.4465 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

K1-O4	2.7263 (16)	$\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	2.8918 (14)
$\mathrm{K} 1-\mathrm{O} 4^{\text {i }}$	2.7375 (15)	K1-O6 ${ }^{\text {iii }}$	2.9244 (19)
K1-O6	2.8042 (18)	K1-O5	3.143 (2)
K1-O3	2.8803 (14)		
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 4^{\text {i }}$	84.62 (4)	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 6^{\mathrm{iii}}$	77.76 (5)
O4-K1-O6	77.62 (5)	$\mathrm{O} 6-\mathrm{K} 1-\mathrm{O} 6^{\text {iii }}$	83.57 (5)
O4 ${ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 6$	71.86 (4)	$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 6^{\text {iii }}$	124.09 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 3$	78.31 (4)	$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 6^{\text {iii }}$	58.36 (4)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3$	143.29 (4)	O4-K1-O5	121.85 (4)
$\mathrm{O} 6-\mathrm{K} 1-\mathrm{O} 3$	133.66 (4)	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 5$	89.35 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	136.24 (4)	O6-K1-O5	152.23 (4)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	135.96 (4)	$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 5$	73.10 (4)
$\mathrm{O} 6-\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	97.85 (5)	$\mathrm{O} 22^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 5$	81.34 (4)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	74.11 (4)	$\mathrm{O} 6^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 5$	72.33 (4)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 6^{\text {iii }}$	157.46 (4)		

[^0]
metal-organic papers

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7B1 $\cdots \mathrm{O}^{\text {iv }}$	0.86 (4)	1.93 (4)	2.772 (2)	166 (3)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} 2 \cdots \mathrm{O}^{\mathrm{v}}$	0.86 (3)	1.98 (4)	2.815 (2)	163 (2)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} 1 \cdots \mathrm{O} 2$	0.86 (3)	2.02 (3)	2.810 (2)	154 (2)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.88 (4)	1.89 (4)	2.764 (2)	174 (4)
O5-H5B1 \cdots O 7	0.77 (3)	2.06 (3)	2.800 (2)	162 (3)
O7-H7B2 \cdots O1	0.80 (3)	1.98 (3)	2.778 (2)	174 (3)
O6-H6B2 $\cdots \mathrm{OF}^{\text {v}}$	0.84 (4)	2.23 (4)	3.067 (3)	170 (4)

Symmetry codes: (ii) $x-1, y, z$; (iv) $-x,-y,-z$; (v) $x, y-1, z$.

H atoms attached to O were located in a difference Fourier map and refined freely. The H atoms bound to C were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Test and Analysis of the Singapore Government Agency for Science, Technology and Research for support.

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Imai,Y., Johnson, E. F., Katto, T., Kurihara, M. \& Stille, J. K. (1975). J. Polymer Sci. 13, 2233-2249.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Wang, D. D., Zhu, H. J. \& Song, G. L. (2005). Acta Cryst. E61, m2610-m2612.
Zhu, H. J., Wang, D. D. \& Song, G. L. (2005). Acta Cryst. E61, o2237-o2238.

[^0]: Symmetry codes: (i) $-x,-y-1,-z$; (ii) $x-1, y, z$; (iii) $-x-1,-y-1,-z$.

